根据1.3.4节方法,将解淀粉芽孢杆菌1539(产多酚、老陈良芽不挥发性酸能力最强)和枯草芽孢杆菌803(产乙偶姻、醋优醋酸总酯能力最强)按比例共培养,孢菌相互作用。菌乳由图5可知,互作当解淀粉芽孢杆菌1539:枯草芽孢杆菌803为1:0.1(V/V)和1:0.5(V/V)共培养时,山西酸菌解淀粉芽孢杆菌1539和枯草芽孢杆菌803的老陈良芽生物量与二者1:1(V/V)时接近;当解淀粉芽孢杆菌1539:枯草芽孢杆菌803为1:10(V/V)共培养时,解淀粉芽孢杆菌1539生物量略有提高。醋优醋酸以上结果说明解淀粉芽孢杆菌1539和枯草芽孢杆菌803共培养对其生物量无显著影响。孢菌
由图6可知,老陈良芽以解淀粉芽孢杆菌1539和枯草芽孢杆菌803纯培养(1:0和0:1)为对照,醋优醋酸研究解淀粉芽孢杆菌1539和枯草芽孢杆菌803比例分别为1:0,0:1,1:0.1,1:0.5,1:1,1:5,1:10(V/V)共培养时对乙偶姻、多酚、总酯、不挥发酸含量的影响。解淀粉芽孢杆菌1539和枯草芽孢杆菌803在纯培养(1:0和0:1,V/V)条件下的乙偶姻、总酯含量接近,低于解淀粉芽孢杆菌1539和枯草芽孢杆菌803共培养的含量,并且随着枯草芽孢杆菌803比例的增加,乙偶姻、总酯含量逐渐增大,当解淀粉芽孢杆菌1539和枯草芽孢杆菌803按1:10(V/V)共培养时乙偶姻、总酯含量最高,分别比纯培养提高了96.23%、12.08%。
解淀粉芽孢杆菌1539和枯草芽孢杆菌803在纯培养(1:0和0:1,V/V)条件下的多酚含量明显低于解淀粉芽孢杆菌1539和枯草芽孢杆菌803共培养的含量,当解淀粉芽孢杆菌1539和枯草芽孢杆菌803按体积比为1:5和1:10共培养时多酚含量较高,分别为179.82μg/mL和197.52μg/mL。解淀粉芽孢杆菌1539、枯草芽孢杆菌803在纯培养(1:0和0:1,V/V)条件下的不挥发酸含量与解淀粉芽孢杆菌1539和枯草芽孢杆菌803按1:0.1,1:0.5,1:1(V/V)共培养时的含量接近,当解淀粉芽孢杆菌1539和枯草芽孢杆菌803按体积比为1:5和1:10共培养时不挥发酸的含量较高,分别为6.28g/L和8.26g/L。
微生物的互作是一个精密而复杂的体系,机制复杂,菌体细胞间通过生理接触,产生信号分子及诱导环境变化,从而引起微生物形态和代谢产物的变化。解淀粉芽孢杆菌1539和枯草芽孢杆菌803在共培养下,乙偶姻、多酚、总酯、不挥发性酸的含量发生变化,而且均比纯培养时有所提高。孟醒在酱香型白酒酿造来源的酿酒酵母与地衣芽孢杆菌相互作用特征及机制的初步解析中,比较单菌与混菌发酵体系中酿酒酵母的生理代谢特征及其与地衣芽孢杆菌的相互作用,发现酿酒酵母和地衣芽孢杆菌1:100混合体系能够产生更多的酯类风味化合物。
有机酸是山西老陈醋总酸中的重要成分,可以缓和陈醋的刺激性,使酸味柔和。以解淀粉芽孢杆菌1539和枯草芽孢杆菌803纯培养为对照,研究共培养相互作用对芽孢菌有机酸含量的影响。由图7、图8可知,解淀粉芽孢杆菌1539和枯草芽孢杆菌803在纯培养(1:0和0:1,V/V)时,二者的有机酸谱相似,柠檬酸和琥珀酸含量最高;在共培养时,二者比例为1:0.1,1:0.5,1:1(V/V)的有机酸谱相似。解淀粉芽孢杆菌1539和枯草芽孢杆菌803为1:0.5(V/V)共培养时的苹果酸含量最高;二者比例为1:10(V/V)共培养时,草酸、丙酮酸、酒石酸、乳酸的含量都显著升高,分别比纯培养(1:0,V/V)时提高89.78%,88.32%,22.92%,32.98%,它们可以缓冲乙酸带来的刺激酸味,使醋的口感变得柔和,其中丙酮酸具有愉快的香味和带有微辣的甜味,可丰富陈醋的口感;乳酸与醇类物质酯化生成脂类物质,如乳酸乙酯,可以很好地改善陈醋的风味。
相关链接:琥珀酸,丙酮酸,乙偶姻,草酸
声明:本文所用图片、文字来源《中国食品学报》,版权归原作者所有。如涉及作品内容、版权等问题,请与本网联系
2025-06-17 06:222959人浏览
2025-06-17 06:221584人浏览
2025-06-17 06:162613人浏览
2025-06-17 04:40852人浏览
2025-06-17 04:201383人浏览
2025-06-17 04:022025人浏览
http://www.hwenz.com/pic/惹人共叫的感情散文明智与感情电影影评感情素材免费网站.jpg
如今随着厂家生产技术不断发展,玻璃也有了各种新的种类,拥有更多更强的功能,逐渐取代普通玻璃。举例来说,原本只能透光挡风的普通玻璃窗,使用夹胶玻璃后就具备了降噪隔热的功能,更加方便实用。我们将在下文简单
中国消费者报福州讯许鑫 记者张文章)4月21日至22日,福建省南平市市场监管局联合延平区、建阳区市场监管局开展打击侵犯南孚电池商标专用权行为执法行动,查处多起侵犯南孚电池商标专用权的违法行为。针对南孚